
UNITED STATES
DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

MACHINE-INDEPENDENT FORTRAN CODING OF LEHMER

RANDOM NUMBER GENERATORS

By W. Kirby

Open-File Report 80-004

Reston, Virginia

1979

Contents

Introduction 2

Method 3

Verification and efficiency 5

Conclusion 7

Tables

Table 1.— Characteristics of random number generators10

Table 2.— Central processor times (IBM System/360 Model 65)
for generating 100,000 random numbers (to nearest
5 CPU seconds).11

Machine-Independent Fortran Coding

of Lehmer Random

Number Generators

W. Kirby

Abstract

Random number generators of the Lehmer multiplicative congruential type

are easily coded :'.n Fortran using double precision modular arithmetic. The

technique rests jointly on double precision Fortran processing small whole

numbers without ar<y loss of precision and on the generator's not producing

any numbers too large to be processed exactly. The double precision code

has been used to implement two 35-bit generators and a 47-bit generator on

the 32-bit IBM System/360 and to implement several System/360 generators on

other machines. Time trials suggest that the Fortran-language generators

yield machine independence with only modest increases in total simulation

run times.

Keywords: Quasirandom numbers, Random numbers, Multiplicative congruential

scheme, Lehmer scheme, Simulation, Monte Carlo method.

Introduction

In practical simulation work one sometimes needs to replicate on one

computer a simulation experiment or random number sequence originally run

on a different computer. This need may arise, for example, during the

installation of a simulation program developed for some other computer.

The problem arose for us, on the other hand, when we wanted to test some

assertions about a 35-bit random number generator with a 32-bit IBM System/
I/

360 computer. Finally, a user having access to more than one computer may

find it desirable, at least for small tests and demonstrations, to have a

single random number source of proven reliability which can be run with­

out modification on any of the available machines.

These problems are particularly troublesome because the need for the

"foreign" random number generator typically is urgent, short-lived, and

small-scaled. There is neither the time and skilled manpower nor the

anticipated volume of use necessary for developing the kind of machine-

language or tricky Fortran code typically used for random number generators

Although the random number routines provided on most computers are

not readily portable, most of them are machine independent in concept.

Of these routines, many are Lehmer multiplicative congruential (or power

residue) generators of the form

xn+l

in which the x are a sequence of quasirandom integers, k is a constant

integer multiplier, and x - , the next quasirandom integer in the se­

quence, is the remainder left after dividing kx by the modulus m. Uniform

(0,1) numbers are obtained by dividing the x by m. Different generators
f tf

— The use of brand names in this report is for identification only and does not
imply endorsement: by the U.S. Geological Survey.

are obtained by different choices of modulus and multiplier. These choices

usually are dictated by computational efficiency and the quasirandom behavior

of the generated numbers. This paper does not consider these

important choices; it deals only with the expedient implementation of ex­

isting generators in a language likely to be available to the simulation

practitioner.

Because it is a strictly mathematical procedure, the multiplicative

congruential scheme can be coded in Fortran—subject, of course, to the

limitations of the available computer's version of the language. Machine-

specific Fortran codes for several such generators are available (.Nance

and Overstreet, 1974, and IBM Corp., 1970, for example). Moreover, the

use of Fortran to obtain machine-independent generators is not new—see,
others and Irving or Schrage (1979)

for example, Ahrens and / (1970), McGrath/(1973), Fellows (1976),/

Nonetheless, the usefulness of Fortran for implementing many existing

multiplicative congruential generators seems not to be generally appreciated.

Method

Two related conditions must be satisified if the multiplicative con­

gruential scheme is to be implemented in Fortran (or any other mathematical

language).

1) The values of all the integers x . k, m} and all the intermediate

products kx must be exactly representable by the Fortran data

types being used.

2) Arithmetic operations on these data types, for integer values up

to the maximum possible intermediate product, must be performed

without any error.

A simple necessary although insufficient condition is thatkdn-2), the

maximum possible intermediate product, not exceed 2 -2, where s is the num-

3

ber of significant bits provided in the data type and preserved in the arith­

metic operations. For example, the Fortran integer data type in the IBM

System/360 has 31 significant bits, plus one sign bit, and can accomodate

31 numbers up to 2 -1. The Fortran double precision data type, on the other

hand, has 56 significant bits (in the floating point mantissa), plus 8 bits

of sign and characteristic information, and can represent integral values

as large as 2 -1 (about 7.2 x 10) without any loss of significant digits.

Straightforward trials confirm that double precision arithmetic is exact

for integral data of this magnitude. Although the Fortran integer data

type often has insufficient capacity, the Fortran, double precision arith­

metic provided on a variety of machines does satisfy all of these condi­

tions for several published generators, including those of IBM (1970),

Lewis, et al. (1969), and Neave (1973).

The proposed machine-independent Fortran coding of the Lehmer gen­

erator is as follows:

DOUBLE PRECISION DI, DK, DM

(1)
DI = DMOD(DI*DK, DM)

URAND = SNGL(DI)/SNGL(DM)

in which DI is the current random integer, DK the constant multiplier, and

DM the modulus, all expressed as Fortran double precision variables.with

integral values. URAND is the current unit uniform variate. Values appro­

priate to the generator being implemented must be supplied for DM and DK,

and an appropriate initial value must be specified for DI.

In addition, this technique has been extended to generators such as

others
those of Ahrens and Dieter (1972) and Payne and / (1969), which have max­

imum intermediate products too big to be represented exactly in the 56 sig­

nificant bits of the IBM System/360 double precision word. The intermediate

products are kept within the limits of exact double precision arithmetic by

expressing the multiplier as k = pq + a and by developing the intermediate

products in four steps, x k ** { [x p(mod m)] q + x a J (mod m) 3 expressed as

follows in Fortran:

DI = DMOD (DMOD(DI*DP,DM)*DQ + DI*DA, DM) (2)

in which all variables must be declared double precision, andmustbe assigned integral

values such that all : steps can be carried out exactly. Specifically, DM*DP and

DM*(DQ + DA) must not exceed the limits for exact double precision arithmetic

16
(about 7.2 x 10 on the IBM System/360).

Finally, the same idea can be carried several steps farther by expressing

the multiplier k as a product of several factors plus an addend. In this way

it was possible to implement a 47-bit generator with multiplier 5 (or 125)
and Irving

long used at Oak Ridge (McGrath/ 1973), in double precision Fortran on the IBM

System /360 as follows:

DI = DMOD (DMOD (DMOD (DMOD (DMOD (DI*DP, DM)

*DP,DM)*DP,DM)*DP,DM)*DP,DM) (3)

47
in which DM = 2 and DP = 125. This coding is not only far simpler than the

multiple-precision integer arithmetic used by McGrath (1973), but also is

practically as portable and fully twice as fast.

Verification and efficiency

The proposed double precision Fortran coding has been used to implement

several Lehmer-type generators which use a variety of machine-specific tricks

to do the modular arithmetic. The characteristics of some of these generators

and short sequences of the random numbers they produce are given in table 1.

The numbers are given to help the user verify his F'ortran coding. Each

sequence except Oak Ridge was started with x = k; the table begins with

the values of x~. The Oak Ridge sequence was started with x - 2001 and

the table shows only the uniform (0,1) numbers produced by that generator.

The Fortran-coded generators were tested on the Burroughs B6700, CDC 6400,

IBM 360, 370, and 7094, PDP-11, Univac 1108, and Honeywell MULTICS computers,

although only the Lewis-Goodman-Miller (1969) generator was tested on all

these machines. In all cases the random numbers produced by the double

precision Fortran code were the same as those produced by the published gen­

erators, thus verifying that Fortran double precision arithmetic does satisfy

the required conditions in the cases tested.

The machine independence of this Fortran code of course is bought at

the price of computational efficiency. To illustrate the magnitude of this

price, we generated several sets of random numbers on an IBM System/360 Model

65 using the Fortran? statements displayed in equations (1), (2), and (3) above

and the LLRANDOM (Learmonth and Lewis, 1973) machine-language version of the

Lewis-Goodman-Miller (1969) generator. The Fortran generator was coded as a

subroutine and was compiled at optimization level 2 of the IBM FORTRAN IV

(H) compiler. For comparability with non-IBM Fortran", DMOD was coded as an

external function. In all cases the numbers were generated in vectors of 100

or 1000 per generator call and at least 100,000 numbers were drawn from each

generator. The central processor time requirements for generating 100,000

numbers are shown in table 2, rounded to the nearest 5 seconds. These times

are subject to perhaps 15 percent variation from run to run. In interpreting

these results, it should be remembered that the Fortran language

generators are not intended as replacements for high-quality production

routines but merely as supplementary sources for otherwise unavilable random

number sequences. The first column of this table indicates that the

machine-language LLRANDOM code is at least two or three times as fast as the

double precision F'ortran code of equation 1 which in turn is twice as fast

as the four-step code in equation 2 and five times as fast as the five-step
in equation 3.

generator/ . These impressive percentage differences are diminished in

practice, however, because it takes time to use the numbers as well as to

generate them. To gauge this effect, we used the Box-Muller (1958) transform

(a logarithm, a square root, a sine, and a cosine per pair of random numbers),

to convert uniform numbers to normal deviates, representing a minimal amount

of additional processing of the generated numbers. The middle column of table

2 indicates that use of the double precision Fortran codes of equations 1 and

2 instead of LLRANDOM entails penalties of about 20 and 50 , respectively,

when minimal additional processing is required. The third column of the table
and others

represents the results of four runs of a program used by Wallis/ (1974) to

simulate the sampling properties of statistics of lognormal populations. Two

of the runs used the LLRANDOM routine to supply uniform random numbers; the other

two used the Fortran code of equation 1 . In this case, the differences in

generator times are nearly obscured by the normal job-to-job variations in

measured CPU time.

Conclusion

These results suggest not only that the proposed Fortran code will run

without change on many machines but also that it will perform nearly as well as

machine-specific generators, in the sense that it will yield substantially the

same overall program execution times and costs to the user. Thus, no simulation

practitioner who is able to use Fortran double precision arithmetic need

feel constrained to use a random number source of dubious quality simply

because it is the only one available on his machine. By use of simple

double precision Fortran coding, he can take his pick from the whole menu

of published multiplicative congruential generators.

Acknowledgements. I am indebted to M. E. Jennings, J. C. Liebman, S. M.

Longwill, C. ReVelle, and D. A. Woolhiser for running demonstration jobs on

their computers and to J. R. Slack for several helpful comments.

REFERENCES

Ahrens, J. H., and U. Dieter, 1972, Computer methods for sampling from
the exponential and normal distributions: Communications of the
ACM, v. 15, no. 10, p. 873-882.

Ahrens, J. H., U. Dieter, and A. Grube, 1970, Pseudo-random numbers, a new
proposal for the choice of multiplicators: Computing, v. 6, p. 121-138.

Box, G. E. P., and M. E. Muller, 1958, A note on the generation of random
normal deviates: Annals of Mathematical Statistics, v. 29 ? p. 610-611.

Fellows, D. M., 1976, Comments on a general FORTRAN emulator for IBM 360/370
random number generator RANDU: INFOR, Canadian Journal of Operations
Research and Information Processing, v. 14, no. 2, p. 183-187.

IBM Corporation, 1970, System/360 Scientific Subroutine Package Version III
Programmer's Manual: Order no. GH20-0205, 454 p.

Learmonth, G. P., and P. A. W. Lewis 1973, Naval Postgraduate School random
number generator package LL RANDOM: Monterey, Calif., U.S. Naval
Postgraduate School, Research Report NPS55LW3061, 54p.

Lewis, P. A. W., A. S. Goodman, and J. M. Miller, 1969, A pseudo-random
number generator for the System/360: IBM Systems Journal, v. 8, no. 2,
p. 136-146.

McGrath, E. J., and D. C. Irving, 1973, Techniques for efficient Monte Carlo
simulation, Vol. II. Random number generation for selected probability
distributions: U. S. National Technical Information Service, AD-762 722.

Nance, R. E., and C. Overstreet, Jr., 1975, Implementation of FORTRAN random
number generators on computers with ones complement arithmetic: Journal
of Statistical Computation and Simulation, v. 4, no. 3, p. 235-243.

Neave, H. R., 1973, On using the Box-Muller transformation with multiplicative
congruential pseudo-random number generators: Applied Statistics, v. 22,
p. 92-97.

Payne, W. H., J. R. Rabung, and T. P. Bogyo, 1969, Coding the Lehmer
pseudorandum number generator: Communications of the ACM, v. 12, no. 2.,
p. 85-86.

Schrage, L., 1979, A more portable Fortran random number generator. ACM
Transactions on Mathematical Software, v. 5, no. 2, p. 132-138.

Wallis, J. R., N. C. Matalas, and J. R, Slack, 1974, Just a Moment!: Water
Resources Research, v. 10, no. 2, p. 211-219.

°\

Ta
bl
e

1.

Ch
ar
ac
te
ri
st
ic
s

of

ra

nd
om

nu
mb
er

ge
ne
ra
to
rs

So
ur
ce

M
o
d
u
l
u
s

Mu
lt

ip
li

er

A
H
R
E
N
S
-
D
I
E
T
E
R

(1
97

2) 2
32

66
36
08
94
1

IB
M

SS
P

RA
ND
U

IB
M

(1
97
0)

23
1

65
53
9

L
E
W
I
S
-
G
O
O
D
M
A
N
-

OA
K

RI
DG
E

M
I
L
L
E
R
 (
19

69
)(

Mc
Gr

at
h,

19

73
)

.4
7

23
1
-1

16
80
7

12
5'

N
E
A
V
E

(1
97

3) ,3
5

13
1

Ra
nd

om

1
In

te
ge

rs

2 3 4 5 6 7
10

00
10
00
0

10
00
00

42
16
53
56
57

15
08
63
37
81

35
46

92
27

69
23

33
34

99
49

12
27

63
46

81
11

32
64

30
77

13
51

37
66

73
12

01
15

31
65

27
39
47
84
45

27
76

09
19

7

39
32

25
17
69
49
9

70
77
96
9

26
54

23
23

95
55
22
17

33
44
32
39
5

11
46

62
44

17
13
28
68
13
15

63
01

96
67

5
75

13
91

10
7

28
24
75
24
9

16
22

65
00

73
98
49
43
65
8

11
44

10
89

30
47
02
11
27
2

10
10
27
54
4

14
57

85
08

78
20

21
70

33
21

15
89
87
34
06

11
21

26
62

56

0.
43

39
0

0.
74
88

7
0.

99
04
3

0.
80

66
1

0.
96

46
6

0.
41

08
3

0.
50
79
3

0.
75
05
8

0.
48
24
3

0.
39
84

7

17
16
1

22
48

09
1

29
44
99
92
1

42
19

75
12

83
30
31
60
41
85

19
18

30
26

18
7

47
15

52
96

33
15

08
75

72
45

1
23

32
27

02
40

3
15
31
60
17
66
7

PA
YN
E-
RA
BU
NG
-

BO
GY

O(
19

69
)

23
1
-1

63
03

60
01

6

15
49

03
53

30
26
46
20
98
2

52
95
12
73
1

18
96
69
78
21

21
16

53
08

88
19
23
12
91
68

16
74

20
10

58
17
56
98
48
21

10
49
38
08
35

19
26
52
52
62

Th
is

ge
ne
ra
to
r

is

in

cl
ud

ed

in

th
is

ta
bu

la
ti

on

to

em
ph
as
iz
e

th
at

it

is

on
ly

on
e

of

se
ve
ra
l

al
te

rn
at

iv
e

ge
ne

ra
to

rs
,

al
l

p
r
o
g
r
a
m
m
a
b
l
e

in

si
mp
le

do

ub
le

pr
ec
is
io
n

FO
RT

RA
N,

av

ai
la

bl
e

to

th
e

si
mu
la
ti
on

us

er
.

Table 2. Central processor times (IBM System/360 Model 65)
for generating 100,000 random numbers (to nearest
5 CPU seconds).

Generator

FORTRAN (eq. 3)

FORTRAN (eq. 2)

FORTRAN (eq. 1)

LLRANDOM

No additional
processing

35-45

20

10

5

Box-Muller
transformation

45

35

30

Simulation
rrogram

75-85

70-80

11

